REVISIONS STD122							
VER	DESCRIPTION	DATE					
1.0	INITIAL RELEASE - PRW	30MAR95					
1.1	UPDATE TABLE TO WORD FORMAT; RENAMED TITLE	26FEB02					

RELIABILITY AND MAINTAINABILITY PREDICTIONS for the FX-30 SYSTEM DEVICES

SimPhonics, Inc Tampa, Florida	с.	TITLE: RELIABILITY AND MAINTAINABILITY PREDICTIONS for the FX-30 SYSTEM DEVICES			
DRAWN: PAUL WEST	DATE: 30 MAR 1995	DWG.NO.:STD1	32	V 1.1	
CHECKED: LJLACK	DATE: 26 FEB 2002	CAGE: 0L4C8	SHEET 1 OF 7		

TABLE OF CONTENTS

1.0 INTRODUCTION	3
2.0 APPLICABLE DOCUMENTS	3
3.0 RELIABILITY PREDICTION	3
3.1 Total System Reliability Prediction	4
4.0 MAINTAINABILITY PREDICTIONS	6
4.1 Total System Maintainability Prediction	6

SimPhonics, Inc.	TITLE: RELIABILITY ANI	D MAINTAINABILITY PREDICTIONS for the	FX-30
CAGE: 0L4C8	DWG.NO.: STD132	SHEET 2 OF 7	V 1.1

1.0 INTRODUCTION

This prediction report is a structured approach to evaluating the Reliability & Maintainability of the design by assigning probabilities and the resulting effect on the system.

2.0 APPLICABLE DOCUMENTS

MIL-STD-785B	RELIABILITY PROGRAM
MIL-STD-470A	MAINTAINABILITY PROGRAM
MIL-HDBK-472	MAINTAINABILITY PREDICTION PROGRAM
MIL-HDBK-217F	RELIABILITY PREDICTION OF ELECTRONIC EQUIPMENT
RADC EEMD-1	ELECTRONIC EQUIPMENT MAINTAINABILITY DATA
RADC MRD-18	MICROCIRCUIT DEVICE RELIABILITY
RADC	RADC RELIABILITY ENGINEER'S TOOL-KIT

SimPhonics, Inc.	TITLE: RELIABILITY ANI	D MAINTAINABILITY PREDICTIONS for the	FX-30
CAGE: 0L4C8	DWG.NO.: STD132	SHEET 3 OF 7	V 1.1

3.0 RELIABILITY PREDICTION

Sources used to develop the reliability prediction in order of precedence are MIL-HDBK-217, RADC MRD-18 and manufacturers data.

In general, these predictions were performed assuming worst case conditions of stress per derating policy and temperature (40 degrees C). This insures added confidence that the equipment will meet the MTBF goals under all specified conditions while operating in a ground Benign environment.

The prediction method 2004 of MIL-STD-756B was used as guidance. This method assumes the time to failure is exponentially distributed and all systems are modeled in series. Generally the expression for part failure rate is:

$$n$$

$$item\lambda = \sum_{n_i} (\lambda GQ)_i,$$

$$i = 1$$
Where:
$$Item\lambda = total failiure rate$$

$$G_i = generic failiure rate for the ith generic part$$

$$Q_i = quality factor for the ith generic part$$

$$n_i = quantity of the ith generic part$$

$$n = number of different generic part catagories$$

3.1 Total System Reliability Prediction

The reliability predictions are depicted within worksheet, Table 3.1-1. Because the system is a series model with no redundancy, a block diagram is not required. All necessary information is outlined on the worksheet.

SimPhonics, Inc.	TITLE: RELIABILITY AN	D MAINTAINABILITY PREDICTIONS for the	FX-30
CAGE: 0L4C8	DWG.NO.: STD132	SHEET 4 OF 7	V 1.1

Table 3.1-1 Reliability Prediction Worksheet

RELIABILITY PREDICTION WORKSHEET Maintenance: Organizational Method: MIL-HDBK-217F

Part Name / Number	Fail Rate	Quantity	Total Fail Rate	Maintenance Repair Replace		Predicted MTBF	Predicted MTTR
Computer / RM5330	28.13	1.0	28.13		X	35,549	0.21
CPU / 486DX-50	7.71	1.0	7.71		X	129,702	0.17
Hard Drive / 290 MB	8.20	1.0	8.20		X	121,951	0.12
Floppy Drive / FD505-5.25	10.00	1.0	10.00		X	100,000	0.12
RAM 1MB /MM0256	1.00	1.0	2.00		X	500,000	0.10
DSP Card C30/SM5001-11	7.71	1.0	38.55		X	25,940	0.11
Analog I/O Card/SM6001-10	17.79	1.0	17.79		X	56,211	0.11
Analog I/O Card/SM6001-20	17.99	1.0	17.99		X	55,586	0.11
Analog I/O Card/SM6001-30	18.19	1.0	18.19		X	54,975	0.11
Analog I/O Card/SM6001-40	18.39	1.0	18.39		X	54,377	0.11
VME/PC Link / Model 406	8.26	1.0	8.26		X	121,065	0.11
PC/VME Dual Port / 400-201	14.68	1.0	14.68		X	68,120	0.11
		SYSTI	EM MTBF =	5266			

SimPhonics, Inc.	TITLE: RELIABILITY AN	D MAINTAINABILITY PREDICTIONS for the	FX-30
CAGE: 0L4C8	DWG.NO.: STD132	SHEET 5 OF 7	V 1.1

4.0 MAINTAINABILITY PREDICTIONS

The maintainability prediction presented herein complies with MIL-STD-470A. Sources used to develop this maintainability prediction in order of precedence are RADC EEMD-1, manufacturers data, and RADC tool-kit.

MTTR values are weight averaged for the system. They are a summation of active repair times during a given period of time, divided by the total number of malfunctions during the same time interval given by the expression.

 $MTTR = \frac{\sum \alpha \lambda R_p}{\sum \alpha \lambda},$ Where : $\alpha = duty \ cycle$ $\lambda = failiure \ rate \ of \ the \ item$ $R_p = repair \ time \ of \ item$

This maintainability prediction has been prepared for the organizational level of maintenance. It is based on the concept that repair at this level will consist of replacement of the lowest replaceable units of the system :

The prediction has been generated using MIL-HDBK-472 as a guide. All calculations of interchange, disassembly, and reassembly are based on an analysis of the assembly drawings and information obtained from subcontractors. This system is designed to have a maximum corrective maintenance downtime of 90 minutes or less for unscheduled organizational level maintenance.

4.1 Total System Maintainability Prediction

The elemental maintenance tasks included in the MTTR requirement were fault location, fault isolation, disassembly, interchange, align and checkout. The Maintainability worksheet Figure 4.1-1 outlines the maintainability times of the major cards of the system.

SimPhonics, Inc.	TITLE: RELIABILITY AN	TITLE: RELIABILITY AND MAINTAINABILITY PREDICTIONS for the FX-30					
CAGE: 0L4C8	DWG.NO.: STD132	SHEET 6 OF 7	V 1.1				

Table 4.1-1 Maintainability Prediction Worksheet

MAINTAINABILITY PREDICTION WORKSHEET Maintenance Level: Organizational Method: MIL-HDBK-472

Part Name/No.	Fail Rate	Qty	Total Fail Rate	Loc	ISO	Dis-Assy	Intr-Chg	Re-Assy	Align/ Checkout	Repair Time R _p	Fail Rate X R _p	R _p in Hours
Computer / RM5330	28.13	1.0	28.13	2.0	2.0	1.5	2.0	2.0	3.0	12.5	351.63	0.21
CPU / 486DX-50	7.71	1.0	7.71	2.0	2.0	2.0	1.0	1.0	2.0	10.0	77.10	0.17
Hard Drive / 290 MB	8.20	1.0	8.20	2.0	1.0	1.0	1.0	1.0	1.0	7.0	57.40	0.12
Floppy Drive / FD505-5.25	10.0	1.0	10.00	2.0	1.0	1.0	1.0	1.0	1.0	7.0	70.00	0.12
RAM 1MB /MM0256	1.00	1.0	1.00	2.0	1.0	1.0	0.5	0.5	1.0	6.0	6.00	0.10
DSP Card C30/SM5001-11	7.71	1.0	7.71	2.0	1.0	1.0	0.5	1.0	1.0	6.5	50.12	0.11
Analog I/O Card/SM6001-10	17.79	1.0	17.79	2.0	1.0	1.0	0.5	1.0	1.0	6.5	115.64	0.11
Analog I/O Card/SM6001-20	17.99	1.0	17.99	2.0	1.0	1.0	0.5	1.0	1.0	6.5	116.94	0.11
Analog I/O Card/SM6001-30	18.19	1.0	18.19	2.0	1.0	1.0	0.5	1.0	1.0	6.5	118.24	0.11
Analog I/O Card/SM6001-40	18.39	1.0	18.39	2.0	1.0	1.0	0.5	1.0	1.0	6.5	119.54	0.11
VME/PC Link / Model 406	8.26	1.0	8.26	2.0	1.0	1.0	0.5	1.0	1.0	6.5	53.69	0.11
PC/VME Dual Port / 400-201	14.68	1.0	14.68	2.0	1.0	1.0	0.5	1.0	1.0	6.5	95.42	0.11
				SYSTE	M MTTI	R =	7.79	Min =	0.13	Hour		

SimPhonics, Inc.	TITLE: RELIABILITY AND MAINTA	TITLE: RELIABILITY AND MAINTAINABILITY PREDICTIONS for the FX-30						
CAGE: 0L4C8	DWG.NO.: STD132	SHEET 7 OF 7	V 1.1					